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Intelligence artificielle:
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Task Domains of Artificial Intelligence




Pathogen-Associated
Molecular Patterns

Host response and organ damage

PAMPs DAMPs
HSPs
LPS B PRRs . Fibrinogen
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Lipopeptide & . —'\\\ Biglycan
Peptidoglycan —" », : / ‘— HMGB!
s @ o
RNA .4 IL-1a, IL-33
I “—~  MRP8/M4
Leukocyte activation Septic Impaired function of immune cells
- Cytokines - Apoptosis of T, B and DCs
- Proteases response - Expansion of Tregs and myeloid
- Reactive oxygen species suppressor cells
~NETs - impaired phagocytosis
Complement activation Neuroendocrine regulation
Coagulation activation Inhibition of proinflammatory gene
Antidinflammatory cytokines
- Soluble receptors
Necrotic cell death Negative regulators of TLR signaling
. reguiation
Pro-inflammatory response Immune suppression
Excessive inflammation causing Enhanced susceptibliity for secondary
collateral damage (tissue injury) Infections and late mortality

Danger-Associated
Molecular Patterns

Wiersinga et al. Virulence 2014 5;1: 36-44



Introduction

°La santé, et particulierement le sepsis, est un
domaine d’application préférentiel de I'lA

°Cependant, le monde de la santé est I'un des
secteurs ou les enjeux de |'lA sont majeurs :
éthiques, responsabilité, cout ...
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Table 2. Definitions of commonly used machine-learning methods in the medical field [30] and examples of models applied in studies of patients with sepsis.

Supervised learning, Unsupervised learnin Deep Ieamin?
Aims at predicting a desired outcome Aims at iaentiﬁing patterns in unlabeled data without A subset of machine learning; uses multiple layers of

based on labeled data. Used for modelling  knowing the outcome. Used for modelling artificial neural networks to identify patterns in data.
disease severity stratification and pathophysiological mechanism and generating Used for modelling disease onset according to
outcome. genomic or phenotypic profiles. temporal relations of events.

Support vector machine Clustering methods Recurrent neural networks

Random forests ® hierarchical clustering Deep neural networks

Logistic regression ® k-means clustering Long short-term memory neural networks

Gradient boosting ® combined mapping of multiple clustering algorithms

Artificial neural networks (COMMUNAL)




Intelligence artificielle
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Apprentissage supervise

How Supervised Machine Learning Works
STEP 2

Feed the machine new, unlabeled information to see if it tags
new data appropriately. If not, continue refining the algorithm

STEP |

Provide the machine learning algorithm categorized or
“labeled” input and output data from to learn

Supervised learning oo} — —

i —— , L b4 f2)
Aims at predicting a desired outcome @ =X |
based on labeled data. Used for modelling 3 J— iy

disease severity stratification and "CATS" ¢ > @ '

outcome. g o — T2 worcars
. p—4\ ||
Support vector machine (5= |l]  machine % | MACHINE
Random forests W= Dt
Logistic regression TYPES OF PROBLEMS TO WHICH IT'S SUITED
Gradient boosting 4 CLASSIFICATION REGRESSION
Artificial neural networks o A | i
orting items Identifying real values
i ® ® into categories (dollars, weight, etc.)

Jorge Leonel
https://medium.com/@jorgesleonel/supervised-learning-c16823b00c13
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Apprentissage non supervisé

Unsupervised learning
Aims at identifying patterns in unlabeled data without
knowing the outcome. Used for modelling
pathophysiological mechanism and generating
genomic or phenotypic profiles.

Clustering methods
® hierarchical clustering
® k-means clustering
® combined mapping of multiple clustering algorithms

(COMMUNAL)

Jorge Leonel
https://medium.com/

How Unsupervised Machine Learning Works

STEPI STEP2

Provide the machine learning algorithm uncategorized,
unlabeled input data to see what patterns it finds

Observe and learn from the
patterns the machine identifies

SIMILAR GROUP |

SIMILAR GROUP 2

v @)@ @)

TYPES OF PROBLEMS TO WHICH IT’S SUITED
CLUSTERING ANOMALY DETECTION

Identifying similarities in groups Identifying abnormalities in data

MACHINE

For Example: Are there patterns in For Example: |s a hacker intruding in
the data to indicate certain patients our network?

will respond better to this treatment

than others?
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Apprentissage profond ou Deep leanring
L W
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Deep learning
A subset of machine learning; uses multiple layers of
artificial neural networks to identify patterns in data.
Used for modelling disease onset according to
temporal relations of events.

Recurrent neural networks

Deep neural networks

Long short-term memory neural networks
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MEDECINE PREDICTIVE

ROBOTS COMPAGNONS

MEDECINE DE PRECISION

CHIRURGIE ASSISTEE
PAR ORDINATEUR

AIDE A LA DECISION

PREVENTION




Introduction

> 'IA peut étre utilisé :
> En pharmacologie
> Imagerie médicale
> 'analyse de risques
°> Prédiction
> Aide au diagnostic
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Feature Articles

Duration of hypotension before initiation of effective antimicrobial
therapy is the critical determinant of survival in human septic shock*
Anand Kumar, MD; Daniel Roberts, MD; Kenneth E. Wood, DO; Bruce Light, MD; Joseph E. Parrillo, MD;

Satendra Sharma, MD; Robert Suppes, BSc; Daniel Feinstein, MD; Sergio Zanotti, MD; Leo Taiberg, MD;
David Gurka, MD; Aseem Kumar, PhD; Mary Cheang, MSc
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time from hypotension onset (hrs) Figure 1. Cumulative effective antimicrobial initiation following onset of septic shock-associated

hypotension and associated survival. The x-axis represents time (hrs) following first documentation of
septic shock-associated hypotension. Black bars represent the fraction of patients surviving to hospital
discharge for effective therapy initiated within the given time interval. The gray bars represent the
cumulative fraction of patients having received effective antimicrobials at any given time point.

Crit Care Med 2006 Vol. 34, No. 6
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Peer) Automated electronic medical record
sepsis detection in the emergency

department Peer.]

Peer-Reviewed & Open Access Editorial Board ' ©

Su Q. Nguyen'*, Edwin Mwakalindile'~, James S. Booth”, Vicki Hogan’,
Jordan Morgan’, Charles T. Prickett’, John P. Donnelly’ and
Henry E. Wang’

°Une alerte automatique / Dossier informatisé
> SIRS + (PAS < 90 mmHg ou lactate > 2)
> 795 alertes durant 3 mois

> 300 alertes analysées
> /PP 44,7%

DO 10.7717/peerj.343
() Copyright

2014 Nguyen et al.
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A—— BM) Open Multicentre validation of a sepsis

prediction algorithm using only vital

l 17467987 sign data in the emergency department,
general ward and ICU

Inpatients only

Qingqging Mao," Melissa Jay,' Jana L Hoffman," Jacob Calvert,’
Christopher Barton,? David Shimabukuro,® Lisa Shieh,* Uli Chettipally,>®

l 133578 Grant Fletcher,® Yaniv Kerem,”® Yifan Zhou,"® Ritankar Das’

Gradient tree boosting machine learning algorithm
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Figure 2 ROC curves for InSight and common scoring systems at the time of (A) sepsis onset, (B) severe sepsis onset and
(C) 4 hours before septic shock onset. MEWS, Modified Early Warning Score; ROC, receiver operating characteristic; SIRS,
l 90353 systemic inflammatory response syndrome; SOFA, Sequential Organ Failure Assessment.
To Classifier

Figure 1 Patient inclusion flow diagram for the UCSF
dataset. UCSF, University of California, San Francisco.
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Figure 3 (A) ROC detection (0 hour, blue) and prediction (4 hours prior to onset, red) curves using InSight and ROC detection
(0 hour, green) curve for SIRS, with the severe sepsis gold standard. (B) Predictive performance of InSight and comparators,
using the severe sepsis gold standard, as a function of time prior to onset. AUROC, area under the receiver operating
characteristic; ROC, receiver operating characteristic; MEWS, Modified Early Warning Score; SIRS, systemic inflammatory
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46,520 patients with 58,976 admissions
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Sepsis Patients

4,683 patients with 8,656 adm issions

1

@ Shock Patients - ICD-9: 785.5
\ 4

Machine Learning Methods for Septic Shock Prediction

Sumitra Mukherjee
College of Engineering and Computing
Nova Southeastern University
Fort Lauderdale, FL, USA

sumitra@nova.edu

Aiman Darwiche
College of Engineering and Computing
Nova Southeastern University
Fort Lauderdale, FL, USA

ad1443@mynsu.nova.edu

Cox Enhanced Random Forest Prediction Model

Table 1. Feature List

Sepss Patients
List of Features
4 683 patients with 8,696 adm ssions - 2,585 with Shock Feature Name | Feature Description
T Albumin Albumin checks liver and kidney function
B e s i B Creatinine Tl_lc level of creatinine in the blood
& otk st tn iz DBP Diastolic Blood Pressure
: :h :::::: exg::s'i\;; :':r:r::“ ) GCS Glasgow coma score (GCS)
3 HR Heart rate
ERIOREI v Lactate The presence of lactic acid in the body
¥ MAP Mean Arterial Pressure
Sepsis Patients RR Respiratory rate
3,101 patients with 5,628 adm issions — 443 patients with 445 admissions with Shock Time SBP Systolic blood pressure
Determined SI HR/SBP ratio
L SpO, Estimate of oxygen concentration in blood
@m Time WndonD Temperature Body Temperature
I WBC White blood cell count
Time Depemdent Data Set AIVR 2018, November 23-25, 2018, Nagoya, Japan.

Time Dependent Data Set ready for Cox Mazards Mode! © 2018 Association for Computing Machinery.

. ) ACM ISBN 978-1-4503-6641-0/18/11...S15.00
4”‘“" R e Jtcem: DOI: https://doi.org/10.1145/3293663.3293673




Machine Learning Methods for Septic Shock Prediction

Sumitra Mukherjee
College of Engineering and Computing
Nova Southeastern University

Aiman Darwiche
College of Engineering and Computing
Nova Southeastern University

Fort Lauderdale, FL, USA Fort Lauderdale, FL, USA
ad1443@mynsu.nova.edu sumitra@nova.edu
. |Pprécision |Sensibilité |Spécificité |
Cox Enhanced Random Forest Prediction Model 95 % 89 % 97 %

Outil de détection précoce classique :
e SIRS

. ). . - 64 % 74 %
e suspicion d’infection
* Hypotension ou hyperlactatemie
A targeted real-time early warning score (TREW Score) 83 % 85 % 67 %
InSight 96 % 80 % 95 %

AIVR 2018, November 23-25, 2018, Nagoya, Japan.
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6641-0/18/11...815.00

DOLI: https://do1.org/10.1145/3293663.3293673
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Accurate prediction of blood culture outcome in the intensive care unit using
long short-term memory neural networks
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Tom Van Steenkiste®, Joeri Ruyssinck™’, Leen De Baets®, Johan Decruyenaere”, Filip De Turck®,
Femke Ongenae”, Tom Dhaene”
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* Ghent University — imec, IDLab, Department of Information Technology, Technologiepark 15, B-9052, Ghent, Belgium
Y Ghent University Hospital, Department of Internal Medicine, De Pintelaan 185, B-9050 Ghent, Belgium
2177 admission en réanimation | ROC curve
0.9

Table 1
Overview of included clinical parameters. If the sampling frequency of a vari- 0.8
able is higher than one per hour, we subsample the data using the approach
described within the main text. o7

Variable Sampling strategy 0.6 AUC 99 %

o
Temperature ['C] max & 0.5 Se 100 %
Blood thrombocyte count min o
0.4

Blood leukocyte count mean S P 87 %2177

C-reactive protein concentration [mg/1] max 0.3

Sepsis-related organ failure assessment max

Heart rate [bpm] max 0.2

Respiratory rate [rpm] max

Int. normalized ratio of prothrombine time max 0.1

Mean systemic arterial pressure [mmHg] max o ) ) ) )

0 0.2 0.4 0.6 0.8 1

FPR

Arif Intell Med. 2013 Jun;37:38-43. doi 10,1016/ .artmed . 20158.10.008. Epub 2018 Nov 3.
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Diagnosis of sepsis from a drop of blood by
measurement of spontaneous neutrophil motility
in a microfluidic assay
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Table 3. Some key studies on the applications of artificial intelligence algorithms for diagnosis and risk stratification in sepsis.

Sepsis Sens. Spec. External
Reference Country Study type Period Data N identification Models Application Comparison (%) (%) AUROC validation
Delahanty USA Retrospective 2016-2017 ER 2,759,529 Sepsis-3 Gradient boosting  Predicts risk of sepsis and in- MLA 67.7 964 093 No
et al. 2018 49 Tenet hospital mortality. SIRS 404 936 0.78
[31] Healthcare MEWS 115 99.1 062
Hospitals qSOFA 37 998 0.62
SOFA 492 929 078
Taylor et al.  USA Retrospective 2013-2014 ER 4676 SIRS, ICD-9  Random forest Predicts in-hospital mortality. MLA - - 086 No
2016 [32] Yale-New Haven CURB-65 - - 073
Hospital MEDS - - on
mREMS - - 072

To cite this article: Pedro Palma & Jordi Rello (2019) Precision medicine for the treatment of
sepsis: recent advances and future prospects, Expert Review of Precision Medicine and Drug
Development. 4:4. 205-213. DOI: 10.1080/23808993.2019.1626714
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Drotrecogin Alfa (Activated) for Adults
with Severe Sepsis and a Low Risk of Death

2640 patients 2002 a 04

Pas de différence sur la mortalité

Risgue hémorraqgigue grave

100+

Survival (%)

80

significativement plus important dans

groupe PCA

704

P=0.31

0

T T | 1
0 7 14 21 28
Days after the Start of the Infusion

Figure 2. Kaplan—Meier Estimates of Survival among 1316 Patients with Se-
vere Sepsis in the Drotrecogin Alfa (Activated) (DrotAA) Group and 1297 Pa-
tients in the Placebo Group.

There was no significant difference between the treatment groups in survival
at 28 days (P=0.31 by the log-rank test).

N Engl ] Med 2005;353:1332-41.



Recommandations actuelles

Surviving Sepsis Campaign: @
International Guidelines for Management
of Sepsis and Septic Shock: 2016

Surviving Sepsis Campaign: International guidelines for Recombinant activated protein C, which was Originally
management of severe sepsis and septic shock: 2008 . . .
recommended in the 2004 and 2008 SSC guidelines, was

1. P Owfingar, MO, Macholl M, Loy, MO, Joan M, Cortot, MO; Juban Bion, MO, Margaret M, MM.OfD,Mm Jitachie, MO,

e e o e e s Ot shown to be effective for adult patients with septic
(lenhan Marmamy, MO; Jorathan Seviarsky, MO, B, Talot 1) MD; Sean Townsend, MO, Jeffrey 5. Vonder, MD, . .

o . i, 1 o . 50 o Mo et Bt G e i shock by the PROWESS-SHOCK trial, and was with-

drawn from the market [345].

Surviving Sepsis -+

Campaign e



Beyond single-marker analyses: mining whole
genome scans for insights into treatment
responses in severe sepsis

CM genotype +/+: PROWESS Entire Cohort PROWESS Entire Cohort
1.0 — DAA 1.0 — DAA
— Placebo
0.9+ 0.9+
0.8+ 0.8
© ©
2 =
2 0.7 e 0.7
3 =
0 ()]
0.6+ 0.6
0.5 0.5+
P value: 2.220446e-16 P value: 0.02702
DAA: N=190 DAA: N=726
0.4 Placebo: N=182 0.4 Placebo: N=720
T T T T | T T T T T
0 5 10 15 20 25 0 5 10 15 20 25
Days After the Start of the Infusion Days After the Start of the Infusion

_ The Pharmacogenomics Journal (2012), 1-9 @ -
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ORIGINAL

Polymyxin B hemoperfusion e
in endotoxemic septic shock patients

without extreme endotoxemia: a post hoc
analysis of the EUPHRATES trial

D. J.Klein"", D. Foster’, P. M. Walker’, S. M. Bagshaw?, H. Mekonnen® and M. Antonelli®

r \ e 3\

921 were screened for septic shock + consented for EAA I "
Total Screen fad 471
EAA <06 =342
Refused consent = 32 040
Z Mat an exclusion criters = 17
I 450 were randomized I No EAA = 16
Died(monbund) = 15
Out of wndow = 14
| 1 MD refusal = 11 o
Allocated to PMX (n=224) Allocated to control (n=226) mfg
- Recelved PMX (n=212) - Received control (n=220) Unabie to obtan consant =
- Did not receive PMX (12) - Did not receive control (n=6) i~
| ! o
I **172 with EAA 0.6-0.9 ] I **185 with EAA 0.6-0.9 I
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Fig. 2 Time to death within 90 days for PMX versus sham. Kaplan-Meier estimates of the probability of survival to day 90 among 194 per-protocol
patients with MODS > 9 and EAA between 0.6 and 0.89, by treatment groups. The 90-day results of Cox proportional hazards adjusted for baseline
MAP and APACHE Il score are the hazard ratio [0.57, 95% CI (0.35, 0.93), P value =002]. The vertical line represents the 28-day interval. The 28-day
adjusted Cox proportional hazard ratio for death in the PMX group compared with the sham group is 0.58 (95% C1, 0.35 to 0.98; P=0.04). TRT treat-
L ment, 25th 25th percentile at 90 days
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Sepsis is the third leading cause of death worldwide and the main cause of mortality in hospitals’, but the best treatment
strategy remains uncertain. In particular, evidence suggests that current practices in the administration of intravenous fluids J 081 081
and vasopressors are suboptimal and likely induce harm in a proportion of patients™*-. To tackle this sequential decision-mak-
ing problem, we developed a reinforcement learning agent, the Artificial Intelligence (Al) Clinician, which extracted implicit Jos| > 06
knowledge from an amount of patient data that exceeds by many-fold the life-time experience of human clinicians and learned E
optimal treatment by analyzing a myriad of (mostly suboptimal) treatment decisions. We demonstrate that the value of the | | 2 ol
Al Clinician's selected treatment is on average reliably higher than human clinicians. In a large validation cohort independent
of the training data, mortality was lowest in patients for whom clinicians' actual doses matched the Al decisions. Our model
provides individualized and clinically interpretable treatment decisions for sepsis that could improve patient outcomes. 02 021
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Fig. 3 | Comparison of clinician and Al policies in eRl and average dose excess received per patient of both drugs in eRI with corresponding mortality. a,
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Performance of closed-loop resuscitation @
of haemorrhagic shock with fluid alone

or in combination with norepinephrine:

an experimental study
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Abstract

Background: Closed-loop resuscitation can improve personalization of care, decrease workload and bring expert
knowledge in isolated areas. We have developed a new device to control the administration of fluid or simultaneous
co-administration of fluid and norepinephrine using arterial pressure.

Method: We evaluated the performance of our prototype in a rodent model of haemorrhagic shock. After haemor-

Conclusions: This study assessed extensively the performances of several algorithms for closed-loop resuscitation
of haemorrhagic shock with fluid alone and with co-administration of fluid and norepinephrine. The performance of
the closed-loop algorithms tested was similar to physician-guided treatment with considerable saving of work for the
caregiver. Arterial pressure closed-loop guided algorithms can be extended to combined administration of fluid and

norepinephrine.

3 ematic of the syStem set-up. The CL-FNE combined a Pl regulator for 1iuld and a FL reguiato
included to mimic the physician decisions. The algorithm needed three variables: systolic arterial pressure, systolic arterial pressure error and time.

During resuscitation, it calculates the ratio of fluid volume/norepinephrine to adapt therapy

OF NE_Séverat conartionar ruies were

of fluid and norepinephrine required less fluid and had less hemodilution than rats resuscitated with fluid alone. Lac-

Libert et al. Ann. intensive Care (2018) 8:89
https://doi.org/10.1186/513613-018-0436-0

tate decrease was similar between groups resuscitated with fluid alone and fluid with norepinephrine.

Conclusions: This study assessed extensively the performances of several algorithms for closed-loop resuscitation
of haemorrhagic shock with fluid alone and with co-administration of fluid and norepinephrine. The performance of
the closed-loop algorithms tested was similar to physician-guided treatment with considerable saving of work for the

caregiver. Arterial pressure closed-loop guided algorithms can be extended to combined administration of fluid and
norepinephrine.

Keywords: Closed-loop, Resuscitation, Haemorrhagic shock, Fluid, Norepinephrine
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Abstract

Background: Vasopressor agents are used to prevent intraoperative hypotension and ensure adequate perfusion. Va-
sopressors are usually administered as intermittent boluses or manually adjusted infusions, but this practice requires
considerable time and attention. We have developed a closed-loop vasopressor (CLV) controller to correct hypotension

gl more efficiently. Here, we conducted a proof-of-concept study to assess the feasibility and performance of CLV control in

W

| ; " € !
e v v e e
— . Methods: Twenty patients scheduled for elective surgical procedures were included in this study. The goal of the CLV

i 5

system was to maintain MAP within 5 mm Hg of the target MAP by automatically adjusting the rate of a norepinephrine
infusion using MAP values recorded continuously from an arterial catheter. The primary outcome was the percentage of
time that patients were hypotensive, as defined by a MAP of 5 mm Hg below the chosen target. Secondary outcomes
included the total dose of norepinephrine, percentage of time with hypertension (MAP>5 mm Hg of the chosen target),
raw percentage “time in target” and Varvel performance criteria.

Results: The 20 subjects (median age: 64 years [52—71]; male (35%)) underwent elective surgery lasting 154 min [124—233].
CLV control maintained MAP within +5 mm Hg of the target for 91.6% (85.6—93.3) of the intraoperative period. Subjects
were hypotensive for 2.6% of the intraoperative period (range, 0—8.4%). Additional performance criteria for the controller
included mean absolute performance error of 2.9 (0.8) and mean predictive error of 0.5 (1.0). No subjects experienced
major complications.

Conclusions: In this proof of concept study, CLV control minimised perioperative hypotension in subjects undergoing
moderate- or high-risk surgery. Further studies to demonstrate efficacy are warranted.

Trial registry number: NCT03515161 (ClinicalTrials.gov).
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Development of a needle insertion manipulator for
central venous catheterization
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Figure 3. Experimental results showing needle insertion force:
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The coming era of precision medicine for @

CO"C'USion intensive care

Jean-Louis Vincent

> Le sepsis est une pathologie qui met en jeu le
pronostic vital

> Les traitements utilisés dans le sepsis ont peu
évolué au cours 2 dernieres décennies,

°'intelligence artificielle est prometteuse et pourrait
améliorer le diagnostic et le pronostic du sepsis
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